skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Czaplewski, David A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Thermally induced ripples are intrinsic features of nanometer-thick films, atomically thin materials, and cell membranes, significantly affecting their elastic properties. Despite decades of theoretical studies on the mechanics of suspended thermalized sheets, controversy still exists over the impact of these ripples, with conflicting predictions about whether elasticity is scale-dependent or scale-independent. Experimental progress has been hindered so far by the inability to have a platform capable of fully isolating and characterizing the effects of ripples. This knowledge gap limits the fundamental understanding of thin materials and their practical applications. Here, we show that thermal-like static ripples shape thin films into a class of metamaterials with scale-dependent, customizable elasticity. Utilizing a scalable semiconductor manufacturing process, we engineered nanometer-thick films with precisely controlled frozen random ripples, resembling snapshots of thermally fluctuating membranes. Resonant frequency measurements of rippled cantilevers reveal that random ripples effectively renormalize and enhance the average bending rigidity and sample-to-sample variations in a scale-dependent manner, consistent with recent theoretical estimations. The predictive power of the theoretical model, combined with the scalability of the fabrication process, was further exploited to create kirigami architectures with tailored bending rigidity and mechanical metamaterials with delayed buckling instability. 
    more » « less
    Free, publicly-accessible full text available March 25, 2026
  2. We use crystalline silicon (Si) antennas to efficiently extract broadband single-photon fluorescence from shallow nitrogen-vacancy (NV) centers in diamond into free space. Our design features relatively easy-to-pattern high-index Si resonators on the diamond surface to boost photon extraction by overcoming total internal reflection and Fresnel reflection at the diamond-air interface, and providing modest Purcell enhancement, without etching or otherwise damaging the diamond surface. In simulations, ~20 times more single photons are collected from a single NV center compared to the case without the antenna; in experiments, we observe an enhancement of ~4 times, limited by spatial alignment between the NV and the antenna. Our approach can be readily applied to other color centers in diamond, and more generally to the extraction of light from quantum emitters in wide-bandgap materials. 
    more » « less